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Abstract

The dynamic nature of our environment, paired with the001
prevalence of monocular videos as a medium for captur-002
ing reality, necessitates efficient methods for reconstruct-003
ing high-dimensional representations from low-dimensional004
video data while tackling dynamic and static elements sep-005
arately for further editing. However, existing methods of-006
ten rely heavily on costly and ambiguous priors, such as007
manually labeled masks, optical flow, and depth informa-008
tion, which can introduce inefficiencies and result in sub-009
optimal reconstructions. In this work, we propose a novel010
reconstruction approach that not only facilitates the re-011
construction of dynamic scenes from monocular videos but012
also effectively decouples dynamic and static components.013
To achieve this, we introduce an automatic segmentation014
pipeline that distinguishes between dynamic and static ob-015
jects. Our method leverages large pre-trained models for016
generating high-quality masks and employs feature point017
registration to enhance generalization beyond traditional018
optical flow techniques. Additionally, we incorporate a se-019
mantic filter to further refine the segmentation results. The020
second stage of our process focuses on the reconstruction021
of dynamic scenes, relying solely on the dynamic masks022
obtained in the first step. This approach results in a hy-023
brid dynamic scene representation that enables effective024
dynamic decomposition called DS-Hybrid GS(Dynamic-025
Static-Hybrid Gaussian Splatting). By using only the dy-026
namic masks as prompt inputs, our method becomes robust027
and applicable to a wider range of datasets. This work028
makes three key contributions: (1) an automatic monocular029
video reconstruction method that facilitates the decoupling030
of dynamic components, (2) an innovative dynamic ele-031
ment classifier based on point density matching, (3)In street032
scenes, it significantly improves the efficiency and reduces033
the cost of reconstruction, and (4) the insight that fewer034
constraints in the reconstruction process lead to greater ro-035
bustness in monocular scene reconstruction.036

OmnimatteRF FGOmnimatteRF BG

Ours BG Ours FG

Figure 1. Video with extreme camera motion Previous meth-
ods, such as OmnimatteRF, address video with parallax effect
well. However, when facing this kind of monocular video, pre-
view methods often tend to treat the entire scene as part of the
foreground due to the influence of optical flow. In contrast, our
method, which uses only the mask as input, is not affected by the
ambiguities of optical flow, enabling more accurate segmentation
results.

1. Introduction 037

The world we inhabit can be viewed as a dynamic scene 038
characterized by both temporal and spatial consistency. At 039
the same time, video, particularly monocular video cap- 040
turing everyday life in a causal manner, has become the 041
primary medium for recording and representing the real 042
world. Recovering high-dimensional representations of the 043
real world from low-dimensional video data has long been a 044
significant challenge and remains crucial for scaling up ma- 045
chine intelligence’s ability to perceive and understand the 046
world. Furthermore, the decoupling of dynamic and static 047
components in the reconstructed scene is essential for sub- 048
sequent applications and editing, playing a key role in the 049
practical viability of reconstruction techniques. 050

Recent works [7, 12, 14, 15, 20, 22, 42] have demon- 051
strated promising results in reconstructing dynamic scenes 052
from monocular videos, with the majority treating dynamic 053
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and static scenes separately. To achieve robust outcomes,054
these studies often incorporate various priors and supervi-055
sion, such as optical flow, depth information, and manual056
annotations to assist in reconstruction. However, methods057
relying on additional prior constraints can be costly and may058
encounter unavoidable ambiguities. Thus, obtaining eco-059
nomically efficient and robust information suitable for dy-060
namic components has become a critical issue in this way061
of monocular video reconstruction. Meanwhile, some ap-062
proaches [26, 39, 41] treat all scenes as dynamic for re-063
construction. However, these methods are often limited064
by their rendering techniques and storage formats. Adding065
temporal information to static scenes can introduce sig-066
nificant redundancy, resulting in inefficient reconstruction067
processes unsuited for subsequent editing tasks. There-068
fore, optimizing these methods for cost reduction and effi-069
ciency, while ensuring their usability, remains an important070
challenge. In prior work on dynamic-static decomposition,071
methods [2] have demonstrated reasonable performance072
in simple cases, effectively separating dynamic and static073
components. Since the concept of Omnimatte [21] pro-074
posed as a general of co-effects such as shadows in dynamic075
scenes, related and following works [12, 16, 21, 33, 39] set-076
ting a higher standard for decomposition tasks. However,077
these methods struggle when applied to more complex dy-078
namic scenarios. As illustrated in Fig. 1, significant camera079
motion can introduce optical flow ambiguities, which cause080
previous methods to fail and lack robustness. Addressing081
such cases, particularly more extreme dynamic situations082
remains an open problem.083

Therefore, we first propose an efficient and rapid solu-084
tion for obtaining dynamic scene information by designing085
a pipeline for the automatic segmentation of dynamic and086
static objects in videos. We leverage the priors from large087
pre-trained models to achieve high-quality masks and inno-088
vatively employ feature point registration to filter dynamic089
objects, offering greater generalization compared to similar090
optical flow methods. Additionally, we utilize a semantic091
filter to refine the results. Furthermore, addressing the de-092
mands for efficient storage and rendering while considering093
the characteristics of monocular videos, we introduce a hy-094
brid dynamic scene representation that enables dynamism095
decomposition with only dynamic masks as additional in-096
put. This approach significantly reduces redundant infor-097
mation compared to previous dynamic methods. Further-098
more, our research has substantiated that a reduction in the099
number of constraints leads to enhanced robustness in per-100
formance.101

1. A fully automatic monocular video reconstruction102
method while enabling dynamic components decoupling.103

2. Novel dynamic elements classifier base match points104
density.105

3. In street scene reconstruction, we eliminated the re-106

liance on bounding boxes, significantly reducing costs and 107
enhancing reconstruction efficiency. 108

4. An insight that fewer constraints provide more robust- 109
ness in monocular reconstruction. 110

2. Related work 111

3D reconstruction Throughout the development of com- 112
puter vision, recovering spatial information from images 113
has remained a challenging problem. Traditional meth- 114
ods [1, 29, 30, 32] have primarily focused on reconstruct- 115
ing geometric information. In recent years, however, novel 116
view synthesis approaches have emerged, such as Neu- 117
ral Radiance Fields (NeRF) [24] and its subsequent exten- 118
sions [3, 4, 9, 35, 48] which are capable of capturing view- 119
dependent effects. However, vanilla NeRF requires query- 120
ing the MLP for hundreds of points each ray, significantly 121
constraining its training and rendering speed. Although 122
some works [10, 17, 19, 25, 28, 44] have attempted to im- 123
prove the training or rendering speed, these methods re- 124
main confined to the nuances of differentiable volume ren- 125
dering until 3D Gaussian Splatting(3DGS) [13] proposed. 126
3DGS utilizes rasterization to achieve real-time rendering 127
of high-quality results in complex scenes. While numer- 128
ous subsequent works have made advancements in geome- 129
try reconstruction [11], large-scale representation [31], and 130
anti-aliasing [45], we argue that the inherent effectiveness 131
of Gaussian primitives, coupled with the theoretical foun- 132
dation of Gaussian Mixture Models (GMM) for fitting arbi- 133
trary shape probability distributions, renders 3DGS a more 134
robust representation for static scenes in our work. 135

Monocular video reconstruction While the input of re- 136
construction of a scene is diverse, monocular video is the 137
most common and challenging set. With the emergence 138
of NeRF and 3DGS, various works [8, 14, 15, 20, 22, 26, 139
36, 37, 40, 41, 46, 47] have attempted to address this issue. 140
Many of these approaches [14, 15, 37, 47] utilize prior in- 141
formation, such as optical flow and depth information, to 142
guide the reconstruction process. However, as dycheck [8] 143
points out, most works focus on quasi-static scenes and are 144
not generalizable for most videos in our lives. In our work, 145
our primary focus is on utilizing robust prior knowledge to 146
reconstruct causal monocular videos. 147

Video dynamics decomposition Video dynamic decom- 148
position plays a fundamental and vital role in diverse video 149
editing. Traditional methods have largely depended on 150
green screens, multi-view observations, or rotoscoping. 151
However, these approaches do not apply to typical monocu- 152
lar videos encountered in everyday situations. Thus, several 153
methods [2, 18] have attempted to address the decoupling 154
of dynamic components in monocular videos, successfully 155
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isolating the RGBA representation of both the foreground156
and background. However, prior methods primarily fo-157
cused on the main dynamic components or considered shad-158
ows in isolation [38], neglecting the overall associated ef-159
fects of dynamic elements, such as shadows and lighting.160
Omnimatte [21], was the first to propose a generic frame-161
work capable of learning all associated effects. In recent162
years, highly relevant improvements have emerged, whether163
by incorporating 3D information [16, 33], employing self-164
supervised techniques to obtain foregrounds [39, 42], or165
utilizing UV mapping to facilitate follow editing [12], all166
of which have shown promising results. However, similar167
to NeRF [24], these methods are limited by their render-168
ing techniques or over-reliance on priors like optical flow169
and depth estimation, resulting in insufficient robustness.170
Recent work on 4D Gaussian Splatting (4DGS) has also171
demonstrated some capabilities for dynamic reconstruction172
and static-dynamic decoupling. Building on this, we aim173
to enhance the robustness of the video dynamic Omni-174
matte decomposition framework by refining 4DGS, thereby175
broadening its applicability to causal videos.176

3. Method177

Given a monocular video, our task is to generate a high-178
quality reconstructed scene while decoupling dynamic and179
static elements. Monocular video reconstruction is ill-posed180
since the observation of dynamic objects is limited under181
one view of one frame and is always insufficient. Although182
the static scene usually has richer views and information183
to achieve a stable and reliable result, preview methods184
strongly rely on various priors to help reconstruct the dy-185
namic part. Our method can reconstruct a dynamic scene186
from a general monocular video taken freely and achieve the187
decomposition of dynamic and static scenes. It is fully self-188
supervised and does not require additional training data, no189
manual labeling, and no optical flow, but only input videos.190

The overview of our method is divided into two stages191
as shown in Figure 2, stage 1 is to obtain a high-quality192
mask for the dynamic part including (b)Automask and193
(c)Dynamic classifier, and stage 2 is to decouple the static194
part and the dynamic part and reconstruct the dynamic195
scene. In stage 1 we will first generate enough numeral196
temporal consistent masks, then we will use a robust match-197
ing model [5] to gain matched points cross frames and use198
epipolar geometry to classify whether the masked object is199
dynamic or not. After that, we propose a semantic filter200
to avoid potential ambiguity in poor-feature regions. More201
details will be explained in Section 3.1.202

As for stage 2 in Section 3.2, we will introduce the203
static dynamic hybrid representation based Gaussian Splat-204
ting which largely refers to 4d-gaussian splatting [41] and205
the training and optimization details will be discussed in206
Section 3.3.207

3.1. Dynamic Mask Estimation 208

Previous methods for obtaining dynamic masks typically 209
rely on manual labeling or optical flow techniques [23]. 210
However, manual labeling is labor-intensive and costly, 211
while optical flow often fails in areas with limited features 212
or when camera motion exceeds object movement, as seen 213
in street scenes. To address these limitations, we leverage 214
large pre-trained models in the preprocessing phase, pro- 215
viding a more robust and automated pipeline for dynamic 216
mask generation. Specifically, we use SAM2 [27] to ini- 217
tialize masks with general semantic priors and RoMa [5] to 218
classify dynamism based on these priors. 219

Mask initialization The process of obtaining the mask is 220
always under-considered. The cost of annotation and ro- 221
bustness challenge is often magnified or prioritized for res- 222
olution in practical applications. To address this issue, we 223
initialize masks through SAM2(Segment Anything model 224
2) [27]. Leveraging the capabilities of SAM2, we can au- 225
tomatically perform a comprehensive segmentation on an 226
initial frame, generate the corresponding mask, and propa- 227
gate through the whole video. This self-generated mask ap- 228
proach is more labor-efficient and scalable compared to in- 229
teractive methods. As a large model, it exhibits greater gen- 230
eralization capability compared to fine-tuned, task-specific 231
segmentation models. Additionally, it provides more re- 232
fined edges and retains higher-frequency details than pre- 233
vious methods. 234

Matching-based classifier After gaining the masks, we 235
need to classify their dynamism. Previous methods for de- 236
termining physical dynamism predominantly rely on optical 237
flow, with some approaches even deriving dynamic masks 238
directly from optical flow. However, optical flow operates 239
under a strong assumption of content consistency between 240
frames, which conflicts with the incomplete observation of 241
dynamic objects in monocular video sequences. Addition- 242
ally, optical-flow-based methods [23] tend to fail when en- 243
countering non-rigid dynamic objects or objects with less 244
prominent image features. In short, optical flow represents 245
the correspondence instead of motion itself, which results 246
in misalignment. 247

We propose a feature-matching-based approach to iden- 248
tify dynamic objects and design a semantic filter to in- 249
corporate commonsense knowledge, thereby mitigating un- 250
avoidable errors arising from ambiguities in image features. 251
Given two paired frames at ti, ti+∆t, where ∆t is fixed 252
frame intervals for equal frame rate video to ensure there 253
will be significant dynamics. We use RoMa [5] to estimate 254
a dense warp W t→ti+∆t and a matchability score p(Pti), 255
where Pti means the matched key points in frame ti pair. 256
We sample key points paired according to the matchabil- 257
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(b) Automask

(c) Dynamic classifier

SAM2*Video Dynamic Mask

RoMa*Paired frames Epipolar constraint

𝑃𝑚𝑎𝑡𝑐ℎ Masks ∩ 𝑃𝑚𝑎𝑡𝑐ℎ
𝑐 ∩ 𝐵𝑖𝑎𝑠𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐

𝑐

Masks

𝐵𝑖𝑎𝑠𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐

Dynamic classifierInitial Masks

(a) Input video

Loss

Static part – 3DGSDynamic part – 4DGS

+

Mix render 

Lossstatic

Lossdynamic

Ground truth

(d) DS-Hybrid GS

Figure 2. Pipeline (a) Our pipeline takes a causal video as input, enabling automatic segmentation and reconstruction with decomposition
of dynamic components. (b) First, we preprocess the video using SAM2 [27] to generate a set of high-quality masks for the entire video.
Based on these initial masks, we design a dynamic classifier to determine whether the masked object is dynamic. (c) With consistent
masks across frames, we select paired frames at fixed intervals and use RoMa [5], a dense feature matching model, for coarse key points
matching. Since dynamic objects often violate epipolar constraints, we apply epipolar constraint filtering to obtain refined match key points
Pmatch, and the superscript c means complementary set. Additionally, we introduce a semantic bias to avoid ambiguity and mismatches in
low-feature areas, such as the sky or road. Consequently, the final criterion for a dynamic mask is that it falls within sparsely matched key
points and is not within the semantic bias. (d) Finally, given the dynamic part masks obtained from the monocular video, we can initialize
a more accurate point cloud via structure-from-motion [29], enabling scene reconstruction with the dynamic parts decoupled.

ity score. Since dynamic objects violate the epipolar con-258
straint, we can conclude that the registration points within259
the dynamic mask are likely to be sparser as shown in Fig 3.260
Once we obtain accurately matched key points between two261
frames, we can employ the RANSAC [6] method to esti-262
mate the essential matrix to exclude points that do not con-263
form to epipolar constraint. This condition can be utilized264
to determine whether the objects within the mask are dy-265
namic. Moreover, ambiguity always exists in some low-266
texture parts, thus we propose a semantic bias set to avoid267
some usual textures that may result in sparse match points,268
like sky or road, which significantly work in street scenes.269
Above all, we classify an object as dynamic or not by fol-270
lowing the equation:271

D =

{
x ∈ I

∣∣∣∣∣ ∆t

T

∑
i=1

Density(Pti) < τ andx /∈ Bias

}
(1)272

Figure 3. Match points Example

where x ∈ I represents points in the initial mask, 273
∆t
T

∑
i=1 Density(Pti) is the average key point density 274

across frames with interval ∆t, and τ is the dynamic thresh- 275
old for identifying sparse matches. x /∈ Bias excludes 276
points within the semantic bias set (e.g., sky or road). 277

3.2. Dynamic Scene Representation 278

As a scene representation method, 3D Gaussian Splat- 279
ting (3DGS) [13] benefits from a well-optimized rasteri- 280
zation system on GPUs, achieving high-quality real-time 281
novel view synthesis. And 4D Gaussian splatting(4DGS) 282
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[41], build on 3DGS, achieve real-time photorealistic dy-283
namic novel view synthesis. Thus, we aim to combine the284
strengths of both approaches by proposing a hybrid scene285
representation method that effectively integrates dynamic286
and static components.287

Preliminary: 4D Gaussian Splatting 3DGS represent288
the whole scene as a cloud of 3D Gaussians while each289
Gaussian has a theoretically infinite scope. Compare to nor-290
malized Gaussian function in origin 3DGS, 4DGS prove the291
the unnormalized Gaussian function of a multivariate Gaus-292
sian can be factorized as the production of the unnormal-293
ized Gaussian functions of its condition and margin distri-294
butions and hold the critical properties. Thus the influence295
of a Gaussian on a given spatial position x ∈ R3 defined by296
an unnormalized Gaussian function:297

p(x|µ,Σ) = e−
1
2 (x−µ)TΣ−1(x−µ), (2)298

where µ ∈ R3 is its mean vector, and Σ ∈ R3×3 is an299
anisotropic covariance matrix. For the Mean vector µ of a300
3D Gaussian is parameterized as µ = (µx, µy, µz) in static301
scene and µ = (µx, µy, µz, µt) for a 4D Gaussian dynamic302
scene. And the covariance matrix Σ both Gaussian is fac-303
torized same into a scaling matrix S and a rotation matrix304
R as:305

Σ = RSSTRT , (3)306

where S is summarized by its diagonal elements S =307
diag(sx, sy, sz), whilst R is constructed from a unit quater-308
nion q for static Gaussian. In contrast, 4D Gaussian extent309
time dimension equally to a space dimension in scale matrix310
and rotaion matrix.311

Moreover, a 3D Gaussian also includes a set of coeffi-312
cients of spherical harmonics (SH) for representing view-313
dependent colorci(d), where ci denotes the color of the i-314
th visible Gaussian from the viewing direction di, along315
with an opacity α. 4DGS proposes to represent ci(d, t) as316
the combination of a series of 4D spherindrical harmonics317
(4DSH) which are constructed by merging SH with differ-318
ent 1D-basis functions.319

In 4DGS rendering, given a pixel with spatial coordi-320
nates (u, v) and timestamp t in view I, its color I(u, v, t),321
after being further factorized as a product of a condi-322
tional probability pi(u, v|t) and a marginal probability323
pi(t) at time t, can be computed by blending visible 4D324
Gaussianspi(x, y, z, t), that have been sorted according to325
their depth. Whereas, a 4D Gaussian can also be factorized326
into pi(x, y, z|t) and t, where pi(x, y, z|t) is a 3D Gaussian327
whose projection in view plane can be approximated by 2D328
Gaussian pi(u, v|t). Same as the linearize the perspective329
transformations in [13, 41, 49], mean of the derived 2D330

Gaussian is obtained as: 331

µ2d
i = Proj (µi|E,K)1:2 , (4) 332

where Proj (·|E,K) denotes the transformation from the 333
world space to the image space given the intrinsic K and 334
extrinsic E. The covariance matrix is given by 335

Σ2d
i = (JEΣETJT )1:2,1:2, (5) 336

where J is the Jacobian matrix of the perspective projection. 337
After get the 2D Gaussian pi(u, v|t) for alpha blending, the 338
rendering equation can be described as below: 339

I(u, v, t) =

N∑
i=1

pi(t)pi(u, v|t)αici(d, t) 340

×
i−1∏
j=1

(1− pj(t)pj(u, v|t)αj). (6) 341

where ci(d, t) denotes the color of the i-th visible Gaussian 342
from the viewing direction di at timestamp t, αi represents 343
its opacity. 344

3D-4D hybrid representation Although 4DGS has 345
demonstrated remarkable results in reconstructing dynamic 346
scenes, its performance in novel view synthesis is subop- 347
timal. This is primarily due to the tendency of 4DGS to 348
overfit static scenes, resulting in issues with spatial consis- 349
tency for static elements and significantly increasing both 350
rendering and storage overhead. In other words, 4DGS can- 351
not distinguish the view effect or time effect with only a 352
monocular video as input. Inspired by techniques in video 353
matting, we propose a hybrid 3D-4D hybrid scene represen- 354
tation. In this approach, dynamic regions are first masked 355
out, allowing separate optimization of the static scene be- 356
fore refining the dynamic regions. It is noteworthy that 357
certain ”Omnimatte” elements, like shadows and reflections 358
within the static scene, may also be learned as part of the dy- 359
namic representation. To obtain a cleaner decouped scene, a 360
retraining strategy with background constraints can further 361
enhance the decoupling of static and dynamic components. 362
And since we majorly focus on monocular reconstruction, 363
we simplify the general mix rendering formula into alpha 364
blending which is enough for most monocular video cases 365
shown below: 366

Iblend(u, v, t) =

N∑
i=1

αiIi(u, v, t) +

(
1−

N∑
i=1

αi

)
Ib(u, v)

(7) 367
where Ii(u, v, t) and αi means the i-th dynamic fore- 368
ground color and its alpha, and Ib(u, v) is the time-invariant 369
static background color. Our representation enables accu- 370
rate scene reconstruction with improved spatial consistency, 371
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making it efficient for subsequent editing tasks. Further-372
more, the internal representation is flexible and can be up-373
dated to incorporate any advanced image-based reconstruc-374
tion methods as they become available.375

3.3. Optimization376

Our training process is divided into two main stages: first,377
training the static components, followed by the optimiza-378
tion of the dynamic elements. Supervision is provided by379
a combination of three distinct loss functions. During the380
static training phase, dynamic regions are masked out, and381
only the real images of the static components are used to382
guide the reconstruction through a static loss term. Once383
the static scene converges, the static model is frozen, and384
we proceed with the reconstruction of the dynamic scene.385
In this stage, a background loss is introduced to preserve386
the clarity of the background in the dynamic regions after387
initializing the dynamic part, while the overall reconstruc-388
tion is supervised by comparing the rendered scene with the389
full real image using a reconstruction loss.390

The total loss function used for training is as follows:391

Loss = λdssimL1 + (1− λdssim)Lssim + λstageLbg (8)392

Here, L1 is the L1 loss, which measures the absolute dif-393
ference between the predicted image and the ground truth394
image. Lssim is the SSIM loss, which is derived from the395
Structural Similarity Index Measure and evaluates percep-396
tual similarity. Lbg represents the background loss, which397
contains the same helps to reduce artifacts in the dynamic398
layers. The hyperparameter λdssim determines the relative399
contribution of the L1 and SSIM losses, while λstage is a bi-400
nary parameter that ensures the background loss is applied401
only during the dynamic stage of training.402

Initialization We first obtain the dynamic mask using403
our proposed method and preprocess the images with this404
mask. These preprocessed images are then used to derive405
the camera poses and initial point cloud required for Gaus-406
sian Splatting through structure-from-motion [29, 30]. Both407
the static and dynamic scene representations are initialized408
based on this point cloud.409

Implementation details For the SAM2 hyperparameters,410
we set 64 points per side, 128 points per batch and only411
one crop number of layers. As for the RoMa matching412
model [5], we did not finetune or modify the model. The413
dynamic threshold in most cases is 0.01. As for the opti-414
mization part, we use Adam optimizer and we perform both415
10000 iterations in static and hybrid training stages for gen-416
eral scenes like in Omnimatte-wild datasets [21] and both417
30000 iterations for street scenes since it is harder to cov-418
erage with the same learning rate 0.00016. The λdssim is419

0.2. Training a general scene usually takes 3.5 hours on a 420
single RTX4090 graphic card. And all the preprocessing is 421
also done on the same device. Our code and dataset will be 422
made public and available. 423

4. Experiments 424

In this section, we present a comprehensive comparison 425
with state-of-the-art methods via both qualitative and quan- 426
titative evaluations. For qualitative results, we assess our 427
method across various datasets, unlike previous methods 428
that primarily focus on video reconstruction with limited 429
camera motion dynamics, we also evaluate our approach on 430
Waymo [34] datasets, which involve more complex and dy- 431
namic scenarios. Additionally, our automatic mask genera- 432
tion method is rigorously tested on these practical datasets 433
to validate its applicability and robustness in real-world 434
conditions. Meanwhile, quantitative results are presented 435
on Waymo dataset for the reconstruction performance and 436
Movies dataset to examine decomposition capability and 437
visual fidelity. The Movies dataset, proposed by Omni- 438
matteRF [16], includes ground truth backgrounds specifi- 439
cally designed to evaluate model decoupling performance. 440
The baseline setting and preprocessing are the same as the 441
instruction. 442

4.1. Qualitative Evaluation 443

We present a qualitative comparison of methods in Fig. 4 444
and Fig. 5. In Fig. 4, our method demonstrates strong 445
performance on this dataset. By using only the dynamic 446
car masks, our approach successfully incorporates the as- 447
sociated shadows into the dynamic region. In contrast, 448
the baseline method struggles with accurately decompos- 449
ing the static background, as the ambiguity in optical flow 450
often causes the network to mistakenly treat all scenes 451
as dynamic. In Fig. 5, we also evaluate our method 452
in iPhone dataset [26], dynamic scenesdataset [43], 453
and Movies dataset with separation results. 454

4.2. Quantitative Evaluation 455

We select PSNR, SSIM, and LPIPS as the evaluation in- 456
dex in both the reconstruction metric and decomposition 457
metric. We first quantitatively evaluated our method on 458
Waymo dataset, comparing the reconstruction performance 459
against baseline methods as shown in Table 1. The results, 460
along with several sampled visualizations in Fig 4, demon- 461
strate that our approach outperforms current state-of-the-art 462
methods of reconstruction from monocular video with de- 463
composition ability. For further analysis, we also evalu- 464
ated our method on the Movie dataset by comparing met- 465
rics between our segmented backgrounds and the ground 466
truth backgrounds, as presented in Table 2. (Some results 467
cite from OmnimatteRF [16]) Our methods perform second 468
best in this metric and have more details in some regions of 469
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Input

GT

OmnimatteRF Ours
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OmnimatteRF Ours

Foreground

OmnimatteRF Ours

Render

Waymo16

Waymo21

Waymo31

Waymo53

Waymo84

Figure 4. Waymo qualitative evaluation We evaluated our method and OmnimatteRF on several Waymo dataset cases. The baseline
method fails to handle these cases with extreme camera motion. The input mask is generated by our automatic method instead of the
dynamic masks projected from the labeled bounding box in the dataset. For the foreground render we apply an alpha threshold of 0.5
which is the same as in the baseline code.

Waymo 016 021 031 053 084
LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑

OmnimatteRF 0.271 0.854 30.60 0.288 0.877 30.82 0.435 0.715 22.47 0.393 0.742 24.04 0.198 0.902 33.31
Ours 0.097 0.968 32.67 0.103 0.962 32.19 0.096 0.956 30.45 0.129 0.938 28.15 0.066 0.975 33.85

Table 1. Reconstruction quantitative evaluations. We present the reconstruction comparison of our method and baselines on the waymo
datasets. The better results are in bold.

Input

Movies

--Chicken

Dynamic scene

--Skating

iPhone

--Broom

Foreground Background

Figure 5. Various datasets qualitative evaluation

the background compared to the best method as shown in470
Fig. 6.471

4.3. Ablation study472

We demonstrate the effect of our background constraint.473
When directly reconstructing the scene, the static part’s re-474

construction is limited by the constrained observation from 475
a monocular video, leading to unavoidable artifacts in some 476
high-frequency regions. Meanwhile, in the dynamic part, 477
4DGS tends to overfit the static scene components. To mit- 478
igate this, we introduce a background loss that encourages 479
the regions outside the dynamic masks to remain cleaner, 480
helping to refine the reconstruction of the dynamic parts as 481
we shown in Fig 7 482

5. Conclusion 483

We introduce an automated method for the complete recon- 484
struction of scenes from monocular videos, with the capa- 485
bility to automatically decouple dynamic and static compo- 486
nents. Extensive experiments have demonstrated that our 487
approach is not only comparable to existing methods on 488
simpler datasets but also exhibits superior performance and 489
robustness in more complex and rapidly changing scenar- 490
ios. Additionally, our method for automatically obtaining 491
dynamic masks is readily transferable to other techniques. 492
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Figure 6. Background visualizations We also evaluate our background decomposition capabilities in comparison to OmnimatteRF on
the datasets they proposed. Additionally, due to the advantages of Gaussian splatting, our method produces more precise results for the
background in the near-field, particularly under similar training conditions.

Movies Donkey Dog Chicken Rooster Dodge
LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑

D2NeRF - - - 0.370 0.694 22.73 - - - 0.340 0.708 25.13 0.408 0.729 20.95
Omnimatte 0.315 0.653 19.11 0.279 0.706 21.74 0.312 0.704 20.95 0.220 0.741 23.14 0.067 0.879 23.88

LNA 0.104 0.849 18.79 0.154 0.828 26.08 0.190 0.818 19.22 0.131 0.804 26.46 0.068 0.937 24.94
4DGS 0.357 0.614 16.48 0.427 0.628 19.64 0.390 0.653 19.42 0.558 0.490 15.41 0.333 0.701 19.41

OmnimatteRF 0.005 0.990 38.24 0.030 0.976 31.44 0.021 0.978 32.86 0.024 0.969 27.65 0.006 0.991 39.11
Ours 0.242 0.783 20.60 0.154 0.941 27.51 0.171 0.891 25.67 0.189 0.906 23.95 0.066 0.970 31.86

Table 2. Decomposition quantitative evaluations. We present the background reconstruction comparison of our method and baselines
on the Movies datasets. The best results are in bold. The second best results are in underline. Results marked - are the ones where the
method failed to give good separations.

Input wo Background Loss w Background Loss

Figure 7. Ablation The input consists of the image and dynamic
mask, while the output includes the dynamic rendering results and
the alpha visualization. The alpha visualization provides a more
intuitive way to assess the effectiveness of the background loss,
as it clearly illustrates the separation between dynamic and static
regions in the scene.

Moreover, our method has several possible further works. 493
First, our method can also be conveniently expanded to 494
multi-view reconstruction in street scenes, significantly re- 495
ducing annotation costs while providing high-quality recon- 496
struction results. Second, we could incorporate additional 497
regularization and constraints, such as depth, to improve 498
the method. But, in this work, we believe that fewer con- 499
straints and regularization lead to greater robustness in the 500
approach. 501

However, our method is not without limitations. The 502
automatic mask method requires threshold adjustments tai- 503
lored to specific kinds of scenes, and it may fail with rel- 504
atively stationary objects. To address this, we propose to 505
extend the video range in autonomous driving scenarios. 506

In summary, our method holds broad potential for appli- 507
cation across various domains. 508
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